
CTIDH: constant-time CSIDH

An introduction to the math ideas

Jana Sotáková
email: ja.sotakova@gmail.com

University of Amsterdam/QuSoft

April 6, 2022

Abstract

This is a written exposition of our paper “ CTIDH: constant-time CSIDH” [BBC+21] following the
talk I recorded for CHES 2021 (online) and the talk I gave online at the ACCESS seminar on April 5,
2022.

Contents

1 CSIDH and the group action 2

2 Constant-time evaluation 5

3 Atomic blocks 7

4 New Keyspace 7

5 New algorithm and Matryoshka Isogeny 9

6 Implementation 10

7 Summary 11

CTIDH: Faster constant-time CSIDH CSIDH [CLM+18] is a post-quantum isogeny-based non-interactive
key exchange protocol.

It uses a group action on a certain set of elliptic curves.

� Secret keys sampled from some keyspace sk ∈ K give group elements,

� Public keys are elliptic curves obtained by evaluating the group action ?

pk = sk ? E

CTIDH is a new keyspace and a new constant-time algorithm for the group action in CSIDH.

� constant-time claims verified using valgrind

� speedups compared to previous best work:

– CSIDH-512: 438006 multiplications (best previous 789000); 125.53 million Skylake cycles (best
previous more than 200 million).

1

mailto:ja.sotakova@gmail.com

1 CSIDH and the group action

Notation and generality We specialize everything to the CSIDH situation. Not all statements generalize
to all (supersingular) elliptic curves, and we will try to make explicit which statements are general and
which are specific to the constructions in CSIDH. The prime number p should be thought of as being of
cryptographic size p ≈ 2512 (or larger). All numbers denoted ` or `i will always be small odd primes (typically,
between 3 ≤ ` ≤ 587), and will always be assumed to divide p+ 1.

Choice of prime Start with a prime p = 4 · (`1 · · · · · `n)− 1 with `1, . . . , `n distinct odd primes.

Supersingular elliptic curves in Montgomery form

EA : y2 = x3 +Ax2 + x A ∈ Fp;

It is a fact that these curves always have p + 1 points, and their groups of rational points are cyclic. You
can take this as your definition (we will not use anything else from supersingularity): cyclic group and p+ 1
points.

Denote the set of such elliptic curves E = {EA : y2 = x3 +Ax2 + x with p+ 1 points over Fp}.

Properties

X Abelian group with an algebraic group law,

X Montgomery form enables x-only arithmetic,

! The group of rational points is cyclic:

E(Fp) ∼= Z/(p+ 1)Z ∼= Z/4× Z/`1 × · · · × Z/`n. (1)

This is the reason for the very special choice of the prime p. Note that in particular, there is a unique
subgroup of order `i for every `i | p+ 1. One way to think of this: every point on E(Fp) can be written
uniquely as a sum over the indices i of points of order dividing `i plus some point of order dividing 4.

Isogenies Whenever have a subgroup of E, we can construct an isogeny. For convenience (and the only
case we need), we assume that this subgroup is generated by a point P ∈ E(Fp) of order `, so we will get an
`-isogeny: a morphism of elliptic curves

ϕ : EA → EA′

with kernel 〈P 〉.

Unraveling the definition

� The isogeny ϕ is given by rational maps in the x, y of E with coefficient in Fp;

� The isogeny ϕ is a group homomorphism: for all points Q and R we have

ϕ(Q+R) = ϕ(Q) + ϕ(R)

� the kernel of ϕ is the subgroup of EA generated by P and has size `, so it is tempting to think of
isogenies as quotient maps that kill the subgroup 〈P 〉, however, the better analogy is:

! the isogeny acts like a “power-`-map” on E(Fp):

if Q has order ` ·N (with gcd(`,N) = 1), then ϕ(Q) has order N on EA′ . If ` does not divide the
order of the point Q, then ϕ(Q) has the same order.

2

In the decomposition of points as in (1), we see that exactly the part of the point coming from the
appropriate subgroup of points of order ` gets killed in the isogeny.

(In general, `-torsion is two-dimensional, isomorphic to Z/` × Z/`, and an `-isogeny kernel is a one-
dimensional subspace, and then `-isogenies only remove the ` from the order from points whose “de-
composition” contains points in the kernel).

Computing an isogeny from a point Suppose P ∈ E is a point of order `. We want to compute the
isogeny with kernel 〈P 〉:

ϕ : EA → EA′

We can follow the following general recipe:

1. Collect the points {[i]P : i ∈ S} for some index set S,

2. Compute the product

h(X) =
∏
i∈S

(X − x([i]P)),

3. Recover A′ from h(X) (by evaluating the polynomial at some numbers, and computing a simple
expression; this part is easy).

� Vélu’s formulas [Vél71] use S = {1, 2, . . . , `−12 };

cost 6` mult

� New
√

élu formulas [BDFLS20] use S = {1, 3, 5, . . . , `− 2}

cost Õ(
√
`) mult

The speedup comes from the fact that they do not process the big product H(X)
by multiplying the factors one by one, but by a baby-step-giant-step strategy.

This recipe allows us to recover the coefficient A′ from the target curve, but the formulas can also be
used to map points through the isogeny ϕ, at a cost of approx 1/3× the total cost of this recipe. Soon we
will want to map some points through the isogenies but we don’t have to worry about the cost of that.

CSIDH magic Recall our prime of choice p = 4 · (`1 . . . `n) − 1 and that we are restricting ourselves to
the elliptic curves in the set E = {EA : y2 = x3 +Ax2 + x with p+ 1 points}.

Every such curve EA ∈ E has one distinguished1 isogeny `i-isogeny: the one that comes from the unique
subgroup of order `i in EA(Fp).

So, for every EA ∈ E and every ` | p + 1, we can construct an `-isogeny ϕ : EA → EA′ using the points
defined over Fp:

EA // EA′

Claim We have EA′ ∈ E, that is, computing these isogenies (with all the points in the kernel being defined
over Fp) preserves the properties we imposed on EA: it is still a supersingular elliptic curve (true for all
isogenies) and the group of rational points EA′(Fp) is still cyclic (not true for all isogenies).

1Not a technical term, just for our purposes. The isogeny is still distinguished and can be picked out easily/algebraically
from the set of all `-isogenies.

3

Complex multiplication magic There is a finite abelian group G with a group action on E with the
following properties:

� the action E 7→ g ? E is free and transitive action:

For every E and E′ in E, there exists a unique element g ∈ G sending E to E′, that is,

E′ = g ? E.

� For every `i | p + 1, there exists a group element gi such that if ϕ : EA → EA′ is the distinguished
`i-isogeny from before, then

gi ? EA = EA′ .

� Because the group G is abelian, it only matters how many times we step in a particular direction, not
the order in which we compute the isogenies.

The group in question is the ideal class group Cl(Z[
√
−p]), and the ring Z[

√
−p] is the Fp-endomorphism

ring of the curves in E, so it’s not out of the blue. But we don’t need the details to understand CSIDH.

Exponent vector (e1, . . . , en) ∈ Zn encodes how many times we perform each isogeny.

(e1, . . . , en) : EA′ =

(
n∏
i=1

geii

)
? EA.

Going back with isogenies For every curve in E and every `i | p + 1, we have one `i-isogeny going
forward, but also one going back:

EA
gi // EA′

g−1
i // EA

Because acting with inverses should get us backg−1i ? ((gi) ? EA) = (g−1i gi) ? EA = EA. The isogeny
corresponding to g−1i is also easy to compute. One description of the isogeny corresponding to gi is that its
kernel are points of order ` with rational coefficients (x, y) for x, y ∈ Fp, a description of the isogeny for g−1i
can be that if we write Fp2 = Fp(

√
−1) (which we can because p ≡ 3 mod 4), then this isogeny is generated

by points of order ` with coordinates (x,
√
−1y) for x, y ∈ Fp.

This is why we allow the exponent vectors (e1, . . . , en) ∈ Zn and not just non-negative integers.

CSIDH key exchange Diffie-Hellman flow Alice and Bob agree on a starting curve E0 ∈ E:

1. Alice samples random exponent vector (ei); Bob samples (fi);

2. They compute action on E0 as EA = (
∏
geii) ? E0 and EB =

(∏
gfii

)
? E0;

3. Exchange public keys: EA, EB ;

4. They compute action on the curve just received:(∏
geii

)
? EB =

(∏
gei+fii

)
? E0 =

(∏
gfii

)
? EA

4

2 Constant-time evaluation

Constant-time evaluation Secret keys (e1, . . . , en) ∈ Zn tell us how many different `i-isogenies we need
to compute to evaluate the action

EA′ =

(
n∏
i=1

geii

)
? EA.

When evaluating the group action, every step (naively) consists of:

1. finding a point of order ` on some curve E ∈ E,

2. an `-isogeny computation from E.

However, if we just apply Vélu’s formulas directly, each of the `i-isogenies takes a different amount of
time. So, somebody timing the computation and seeing which steps occur, will be able to read off which
isogenies we computed . . . which is exactly the secret key. So, we want to compute the isogeny group action
in a way that would not leak this information. A bit more formal definition follows below:

Constant-time evaluation of the group action If the input is a CSIDH curve and a private key, and
the output is the result of the CSIDH action, then the algorithm time provides no information about the
private key, and provides no information about the output.

Computing the group action Let’s compute one step in a bit more detail: we want to compute the
group action EA′ = gi ? EA as an `i-isogeny:

1. find a point P of order `i on EA:

(a) generate a point T of order p+ 1 on EA,

(b) multiply P = [p+1
`i

]T .

2. Compute the `i-isogeny ϕ : EA → EA′ with kernel P :

(a) enumerate the multiples [i]P of the point P for i ∈ S,

(b) construct a polynomial h(X) =
∏
i∈S(X − x([i]P)),

(c) Compute the coefficient A′ from h(X).

We need to comment on Step 1a. We do not know how to sample random points directly, however, we do
know how to sample points directly: either just sample a random x and hope that x3 +Ax2 + x is a square,
or use more sophisticated ways like the Elligator map. But once we have a random point T , it will not have
exact point of order p + 1. This failure is a problem we will ignore today completely, but has to be taken
into account when implementing isogenies – until we find a way to reliably sample points of a certain order.

In Step 1b, once we have a random point of order p + 1, we need to compute one scalar multiplication
by a number close to p + 1; the cost of this step absolutely dominates the isogeny computation, because
it’s on the order of ≈ 11 log2(p) multiplication in Fp. For CSIDH-512, this is about 5500 multiplications,
whereas the largest `i = 587 and computing the 587-isogeny closer to 2000 multiplications (and 587 itself is
an outlier, larger than other primes, so most isogeny computations are a lot cheaper). We therefore want to
compute as few of these big scalar multiplications as possible.

5

Amortize the cost Let us go trough an example of how to compute 3 different isogenies using one big
scalar multiplication (and some (a lot smaller) overhead). Think of this as an exercise, try to fill in the
correct orders for the various points (if you’re uncertain, see the same computation below 2)

Take the exponent vector (1, 1, 1, 0, . . . , 0): compute `i-isogenies for `1 = 3 and `2 = 5 and `3 = 7:

1. Find a suitable point:

(a) Generate a random point T of order p+ 1,

(b) Compute T1 =
[
p+1
3·5·7

]
T has exact order ___

2. Compute the isogenies:

(a) 3-isogeny:

i. Compute P1 = [5 · 7]T1 has order ___

ii. Use P1 to construct 3-isogeny ϕ1,

iii. Point T2 = ϕ1(T1) has order ___ on the new curve,

(b) 5-isogeny:

i. Compute P2 = [7]T2 has order ___,

ii. Construct 5-isogeny ϕ2 with kernel P2,

iii. The point T3 = ϕ2(T2) has order ___ on the new curve,

(c) 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3 which has order ___

Towards atomic blocks Now we modify the procedure above to evaluate the action by the exponent
vector (1, 0, 1, 0, . . . , 0): compute `i-isogenies for `1 = 3 and `3 = 7 but no 5-isogeny:

1. Find a suitable point:

(a) Generate a random point T of order p+ 1,

(b) Compute T1 =
[
p+1
3·5·7

]
T has exact order 3 · 5 · 7,

2. Compute the isogenies:

(a) 3-isogeny:

i. Compute P1 = [5 · 7]T1 has order 3,

ii. Use P1 to construct 3-isogeny ϕ1,

iii. Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

(b) No 5-isogeny:

i. Compute the isogeny as before but throw away the results,

ii. Adjust to code to always compute [5]T2,

iii. The point T3 = [5]T2 has order 7 on the same curve,

(c) 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.

If you believe that this can be made to work to not leak information about whether or not you computed
a 5-isogeny in the process, you can quickly extend this to a procedures that allows you to compute either of
the 3, 5 or 7-isogenies without leaking (timing) information on which of the isogenies were actually computed.

6

3 Atomic blocks

The discussion above lead us to the following (simplified) definition of atomic blocks:

Definition 3.1 (Atomic Blocks). Let I ⊂ {1, . . . , n} be a subset of indices and write I = (i1, . . . , ik).
An atomic block of length k is a probabilistic algorithm αI :

� taking inputs A and ε ∈ {0, 1}k,

� returning A′ ∈ Fp such that EA′ = (
∏k
j=1 g

εj
ij

) ? EA,

� the time distribution of αI is independent of ε.

On the previous slide, we saw an atomic block αI with I = (1, 2, 3) that computes

EA′ = gε11 g
ε2
2 g

ε3
3 ? EA

for (ε1, ε2, ε3) ∈ {0, 1}3 without leaking timing information about (ε1, ε2, ε3).

Why atomic blocks? Because:

1. Previous CSIDH implementations are using atomic blocks implicitly;

2. Simpler framework to compute the group action:

(a) split the computation into atomic blocks independent of the secret;

(b) make sure each atomic block is constant-time.

4 New Keyspace

Keyspace Remember what we want: for (e1, . . . , en) ∈ Zn, evaluate the group action

EA′ =

(
n∏
i=1

geii

)
? EA.

� We want to put constraints on what exponent vectors we can expect: (e1, . . . , en) are sampled from
some keyspace K ⊂ Zn;

� This keyspace needs to be large enough #K ≈ 2256 to prevent

Example of keyspaces

1. Original CSIDH [CLM+18]: |ei| ≤ m for all i with (2m+ 1)n ≈ 2256, so m = 5 for CSIDH-512;

2. [MCR19] use 0 ≤ ei ≤ 10 for CSIDH-512;

3. you can allow the mi to vary for efficiency, such as in [CDRH20].

Batching Take CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587)− 1. Consider the exponent vector:

primes 3 5 7 11 13 17 19 23 29 31 . . .
exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .

And note that this vector also lives in the space given by the constraints:

1. |e1|+ |e2|+ |e3| ≤ 3,

2. |e4|+ |e5|+ |e6| ≤ 5,

3. |e7|+ · · ·+ |e10| ≤ 5, . . .

7

New batching key space For B batches: For N ∈ ZB>0 and m ∈ ZB≥0, we define

KN,m :=
{

(e1, . . . , en) ∈ Zn |
∑Ni

j=1 |ei,j | ≤ mi for 1 ≤ i ≤ B
}
.

That is, we split the primes into B batches, and for each batch, we bound the total number of isogenies we
are willing to compute for primes from this batch.

Example for 6 primes (Only considering non-negative exponents for simplicity.) Take 6 primes and split
them into batches of 3 primes each, and allow up to 3 isogenies per batch: we want vectors

({e1, e2, e3}{e4, e5, e6})

constrained by

0 ≤ ei, e1 + e2 + e3 ≤ 3, e4 + e5 + e6 ≤ 3.

It is fun counting practice to check that there are 20 · 20 = 400 such vectors.
To get as many vectors with “ balanced exponents” (bounding each entry individually with similar

bounds), we could take for instance bounds (3, 3, 3, 3, 2, 2), giving us 324 keys.
(As a short sidenote, the most efficient way to have as many keys with as small entries as possible is to

put all the primes in one batch, and consider the L1-ball, see [NOTT20].)

Constant time However, we also want to compute things in constant time. Most previous constant-time
approaches essentially compute the same number of `i-isogenies no matter what the exponent vector was, so
in the balanced exponent example would compute 3+3+3+3+2+2 = 16 isogenies. However, in CTIDH, we
push the constant-time computation into the batch: all the isogenies in the batch will be computed with the
same code, and hence not leaking information on the degree - any more information than what we already
know from the definition of the keyspace. This includes some overhead, so our isogenies are more expensive.
But the speedup of CTIDH comes from the fact, that we still only need to compute 3 + 3 = 6 isogenies.

Atomic blocks for batches Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute
one 5-isogeny and one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . .). Let’s try to copy the atomic
blocks from 2

1. Find a suitable point:

(a) Generate a random point T of order p+ 1,

(b) Compute T1 =
[

p+1
(3·5·7)(11·13·17)

]
T has order (3 · 5 · 7)(11 · 13 · 17).

2. Compute the isogenies:

(a) {3, 5, 7}-isogeny:

i. Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),

ii. Use [3 · 7]P1 of order 5 to construct 5 -isogeny ϕ1,

iii. Point T2 = [3 · 7]ϕ1(T1) has order 11 · 13 · 17 on the new curve,

(b) {11, 13, 17}-isogeny:

i. Compute P2 = [13 · 17]T2 has order 11,

ii. Construct 11-isogeny ϕ2 with kernel P2.

It is easy to check that the only steps that leak information on the primes in the batch are the small
scalar multiplications [3 ·7]P1, [13 ·17]T2 (which are easily fixed to be in constant time), but most importantly
the actual computations of 5- and 11-isogenies. This is what we fix next.

8

5 New algorithm and Matryoshka Isogeny

Let’s examine the procedure to compute the 11-isogeny:

1. enumerate the multiples [i]P of the point P for i ∈ S with S = {1, 2, . . . , 5}

2. construct h(X) =
∏5
i=1(X − x([i]P)),

3. Compute the coefficient A′ from h(X).

Now compute the ��11 13-isogeny:

1. enumerate the multiples [i]P of the point P for i ∈ S with S = {1, 2, . . . , 5, 6}

2. construct h(X) =
∏5
i=1(X − x([i]P)) · (X − x([6]P)),

3. Compute the coefficient A′ from h(X).

And now the ��11��13 17-isogeny

1. enumerate the multiples [i]P of the point P for i ∈ S with S = {1, 2, . . . , 5, 6, 7, 8}

2. construct h(X) =
∏5
i=1(X − x([i]P)) · (X − x([6]P)) · (X − x([7]P))(X − x([8]P)),

3. Compute the coefficient A′ from h(X).

We see that the code to compute a 17-isogeny naturally includes everything we need to compute a 11- or
13-isogeny. So, with small overhead, we can use the same code to compute isogenies in the same batch. This
also justifies why we split our primes in batches: we don’t want to pay the price for the 587-isogeny for all
the small isogenies. Carefully selecting the batches has major impact on performance, and is an optimization
problem we haven’t been able to solve in full generality.

Matryoshka isogenies

� We can compute the isogeny for any prime in the batch with the same code,

� at the cost of computing isogeny for the largest prime,

� requiring using dummy computations.

This was know for Vélu formulas [BLMP19] but our new observation is that this also works for
√

élu from
[BDFLS20], and we newly used this together with our batching trick to get a constant-time implementation.

Matryoshka for
√

élu We need to evaluate the polynomial

h(X) =
∏
i∈S

(X − x([i]P)),

for S = {1, 3, . . . , `− 2}.

9

Visual explanation for 29 and 31 In
√

élu, we process the product as a “ square-box”, which is processed
using baby-step-giant-step procedure, and a final multiplication by the factors that did not fit into the optimal
box. So, we use the procedure for the smallest prime, and add the factors we would need for the largest
prime to multiply with as more factors outside of the box:

1 9 17 25
3 11 19 27
5 13 21 29
7 15 23

←→

(∏
box from 1 to 23

(X − x([i]P))

)
× (X − x([25]P)(X − x([27]P))(X − x([29]P))

6 Implementation

Finally, a few brief comments on implementation.

Selection of the parameters We use a greedy algorithm to find efficient batching in Table 1

� For every batch configuration (number of batches, bounds of each batch), we can estimate the cost of
the group action evaluation.

� Adaptively change batch configuration to find one with smaller cost (and large enough keyspace).

See in the table that the resulting batches have primes of approximately the same size, so paying the
prime for one isogeny at the cost of the largest prime in the batch, is not so much of an overhead.

batch size primes bound
1 2 3, 5 10
2 3 7, 11, 13 14
3 4 17, 19, 23, 29 16
4 4 31, 37, 41, 43 17
5 5 47, 53, 59, 61, 67 17
6 5 71, 73, 79, 83, 89 17
7 6 97, 101, 103, 107, 109, 113 18
8 7 127, 131, 137, 139, 149, 151, 157 18
9 7 163, 167, 173, 179, 181, 191, 193 18
10 8 197, 199, 211, 223, 227, 229, 233, 239 18
11 8 241, 251, 257, 263, 269, 271, 277, 281 18
12 6 283, 293, 307, 311, 313, 317 13
13 8 331, 337, 347, 349, 353, 359, 367, 373 13
14 1 587 1

Table 1: Batches for the primes used in CSIDH-512

valgrind constant time verification You can check your code manually for constant-time-ness, or you
can use valgrind to do it for you, checking that there is no secret data flow influencing branches or indices.

Speedups, comparison to previous works We are almost twice as fast as compared to the previous
constant-time implementations, see Table 2.

10

pub priv DH Mcyc M S a 1, 1, 0 1, 0.8, 0.05
512 220 1 89.11 228780 82165 346798 310945 311852 new
512 220 1 190.92 447000 128000 626000 575000 580700 [CCJR20]
512 220 2 93.23 238538 87154 361964 325692 326359 new
512 256 1 125.53 321207 116798 482311 438006 438762 new
512 256 1 — 624000 165000 893000 789000 800650 [ACR20]
512 256 2 129.64 330966 121787 497476 452752 453269 new
512 256 2 218.42 665876 189377 691231 855253 851939 [CDRH20]
512 256 2 238.51 632444 209310 704576 841754 835121 [HLKA20]
512 256 2 239.00 657000 210000 691000 867000 859550 [CCC+19]
512 256 2 — 732966 243838 680801 976804 962076 [OAYT19]
512 256 2 395.00 1054000 410000 1053000 1464000 1434650 [MCR19]

1024 256 1 469.52 287739 87944 486764 375683 382432 new
1024 256 1 — 552000 133000 924000 685000 704600 [ACR20]
1024 256 2 511.19 310154 99371 521400 409525 415721 new

Table 2: pub: size of p; priv: size of the keyspace; DH 1: group action evaluation, DH 2: group
action evaluation and public key validation; Mcyc millions of cycles on a 3GHz Intel Xeon E3-1220 v5
(Skylake) CPU with Turbo Boost disabled; “M” multiplications; “S” squarings; “a” additions; “1, 1, 0” and
“1, 0.8, 0.05” combinations of M, S, and a.

7 Summary

CTIDH is:

� New keyspace for CSIDH,

� New constant-time algorithm to evaluate the group action in CSIDH,

� Formalization of atomic blocks to compute the isogeny group action,

� constant-time verification using valgrind,

� speed records,

Find the article and the code at

https://ctidh.isogeny.org/

References

[ACR20] Gora Adj, Jesús-Javier Chi-Domı́nguez, and Francisco Rodŕıguez-Henŕıquez. On new Vélu’s
formulae and their applications to CSIDH and B-SIDH constant-time implementations, 2020.
https://eprint.iacr.org/2020/1109.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer,
Benjamin Smith, and Jana Sotáková. CTIDH: faster constant-time CSIDH. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(4):351–387, August 2021. Artifact
available at https://artifacts.iacr.org/tches/2021/a20.

[BDFLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation
of isogenies of large prime degree, 2020. https://eprint.iacr.org/2020/341.

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum circuits for
the CSIDH: optimizing quantum evaluation of isogenies, 2019. https://eprint.iacr.org/

2018/1059.

11

https://ctidh.isogeny.org/
https://eprint.iacr.org/2020/1109
https://artifacts.iacr.org/tches/2021/a20
https://eprint.iacr.org/2020/341
https://eprint.iacr.org/2018/1059
https://eprint.iacr.org/2018/1059

[CCC+19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca De Feo, Fran-
cisco Rodŕıguez-Henŕıquez, and Benjamin Smith. Stronger and faster side-channel protections
for CSIDH, 2019. https://eprint.iacr.org/2019/837.

[CCJR20] Jorge Chávez-Saab, Jesús-Javier Chi-Domı́nguez, Samuel Jaques, and Francisco Rodŕıguez-
Henŕıquez. The SQALE of CSIDH: square-root Vélu quantum-resistant isogeny action with
low exponents, 2020. https://eprint.iacr.org/2020/1520.

[CDRH20] Jesús-Javier Chi-Domı́nguez and Francisco Rodŕıguez-Henŕıquez. Optimal strategies for CSIDH,
2020. https://eprint.iacr.org/2020/417.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: an
efficient post-quantum commutative group action, 2018. https://eprint.iacr.org/2018/383.

[HLKA20] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh. Further optimiza-
tions of CSIDH: A systematic approach to efficient strategies, permutations, and bound vectors,
2020. https://eprint.iacr.org/2019/1121.

[MCR19] Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and Elligators: An efficient constant-
time implementation of CSIDH, 2019. https://eprint.iacr.org/2018/1198.

[NOTT20] Kohei Nakagawa, Hiroshi Onuki, Atsushi Takayasu, and Tsuyoshi Takagi. L1-norm ball for
CSIDH: Optimal strategy for choosing the secret key space, 2020. https://eprint.iacr.org/
2020/181.

[OAYT19] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (Short paper) A
faster constant-time algorithm of CSIDH keeping two points, 2019. https://eprint.iacr.

org/2019/353.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques, 1971. https://gallica.bnf.fr/ark:/12148/
cb34416987n/date.

12

https://eprint.iacr.org/2019/837
https://eprint.iacr.org/2020/1520
https://eprint.iacr.org/2020/417
https://eprint.iacr.org/2018/383
https://eprint.iacr.org/2019/1121
https://eprint.iacr.org/2018/1198
https://eprint.iacr.org/2020/181
https://eprint.iacr.org/2020/181
https://eprint.iacr.org/2019/353
https://eprint.iacr.org/2019/353
https://gallica.bnf.fr/ark:/12148/cb34416987n/date
https://gallica.bnf.fr/ark:/12148/cb34416987n/date

	CSIDH and the group action
	Constant-time evaluation
	Atomic blocks
	New Keyspace
	New algorithm and Matryoshka Isogeny
	Implementation
	Summary

